cover image.png

To learn and understand mathematics, students must engage in the process of doing mathematics. Emphasizing active learning, Abstract Algebra: An Inquiry-Based Approach not only teaches abstract algebra but also provides a deeper understanding of what mathematics is, how it is done, and how mathematicians think.

The book can be used in both rings-first and groups-first abstract algebra courses. Numerous activities, examples, and exercises illustrate the definitions, theorems, and concepts. Through this engaging learning process, students discover new ideas and develop the necessary communication skills and rigor to understand and apply concepts from abstract algebra. In addition to the activities and exercises, each chapter includes a short discussion of the connections among topics in ring theory and group theory. These discussions help students see the relationships between the two main types of algebraic objects studied throughout the text.

Encouraging students to do mathematics and be more than passive learners, this text shows students that the way mathematics is developed is often different than how it is presented; that definitions, theorems, and proofs do not simply appear fully formed in the minds of mathematicians; that mathematical ideas are highly interconnected; and that even in a field like abstract algebra, there is a considerable amount of intuition to be found.

Solutions Manual for Instructors

Instructors may download a zip file containing solutions for the activities and the exercises for each investigation by clicking on this link:  Solutions Manual.

This zip file is password protected.  Instructors should send an email to Jon Hodge at to obtain the password for this file.

Errata for Abstract Algebra: An Inquiry-Based Approach
Some errors and typographical errors have been discovered in the book. Click here to obtain a pdf document that describes these errors.

Java Applets Mentioned on Page xx of the Preface
The following links may not work depending on the Java configuration of your computer.  We are working to update them.

We express our gratitude to Dr. David Austin of Grand Valley State University for developing these applets and for allowing us to provide a link to them.