Errata for
 Abstract Algebra: An Inquiry-Based Approach

Jonathan K. Hodge, Steven Schlicker, and Ted Sundstrom

May 9, 2019

- In Investigation 5, the references to Activity 5.11 on p. 53 should be to Activity 5.13 instead.
- Investigation 5, Exercise 11 (p. 59) should start with "Let a and b be integers."
- In Definition 8.3 (p.94), the fourth line should begin "Furthermore, for every integer $n \geq 2 \ldots$ " (Currently, it reads "for every integer $n>2$.")
- In the proof of Theorem 13.5 (p. 169), the first line should read "Let F be a field..." (Currently, F is only assumed to be a commutative ring.)
- The parenthetical remark on line $\mathbf{2}$ of $\mathbf{p .} 188$ should note that $f(x)$ is a degree 3 polynomial (not degree 2 as stated).
- Exercise 5 in Investigation 17 (p.248) is incorrect. The exercise asks to show that the ring $\mathcal{C}(\mathbb{R})$ (from Activity 17.27) is an integral domain. However, $\mathcal{C}(\mathbb{R})$ is not an integral domain. To see this, let f and g be defined by

$$
f(x)=\left\{\begin{array}{ll}
x, & \text { if } x \leq 0 \\
0, & \text { if } x>0
\end{array} \quad \text { and } \quad g(x)=\left\{\begin{array}{ll}
0, & \text { if } x \leq 0 \\
x, & \text { if } x>0
\end{array} .\right.\right.
$$

Then $f(x) g(x)=0$ for all $x \in \mathbb{R}$, which makes $f g=0$, but $f \neq 0$ and $g \neq 0$. So $\mathcal{C}(\mathbb{R})$ is not an integral domain.

- In Preview Activity 19.1 (p. 271), the curve should be $r=\cos (2 \theta)$.
- In Activity 20.18 (p. 290), part (a)(ii) should begin, "Use part (i) to deduce that ..."
- In Preview Activity 21.1 (p. 295), the second matrix listed for $\mathrm{GL}_{2}(\mathbb{R})$ is not invertible and is therefore not an element of $\mathrm{GL}_{2}(\mathbb{R})$. Replace any of the 1 s with a 0 to obtain an invertible matrix.
- In the discussion at the top of \mathbf{p}. 296, the permutation on the left-hand side of the equal sign should be

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right)
$$

not

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

- In Preview Activity 25.1 (p. 333), subparts (ii) and (iii) of part (b) should reference part (i) and not part (a).
- The last sentence on p. 338, as well as Exercise 6 of Investigation 25 (p. 343), should note that S_{n} is never an Abelian group for $n \geq 3$. (Clearly, S_{2} is Abelian.)
- In the proof of Theorem 31.13 ($\mathbf{p} .441$), the third line from the top is missing a few words. It should read, "whenever $q_{1}, q_{2}, \ldots, q_{t}$ are the distinct prime factors of the order of an element $g \in G \ldots$. In addition, three lines above equation (31.11), the variable n is undefined. It should be replaced with $|a|$.
- On p. 451, the sentence above equation (32.2) is missing an important detail: $\operatorname{cl}\left(a_{1}\right), \operatorname{cl}\left(a_{2}\right), \ldots, \operatorname{cl}\left(a_{r}\right)$ are the distinct multi-element conjugacy classes of G.
- On p. 454, the following sentence is incorrect: "From Exercise 36 of Investigation 27 (see page 378), we know that the only normal subgroups of D_{6} are $\{I\},\left\langle R^{3}\right\rangle$, and D_{6}." In fact, the normal subgroups of D_{6} are the subgroups of $\langle R\rangle$ along with $\left\langle r, R^{2}\right\rangle$ and $\left\langle r R, R^{2}\right\rangle$.
- In Activity A. 12 (p. 541), the compositions are in the wrong order. All of the compositions should be $h \circ f$ or $h \circ g$.
- There are several typos in Exercise 5 of Appendix A (p. 548). The corrected exercise is as follows:

Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
(a) Is it true that if $g \circ f$ is an injection, then both f and g are injections? If the answer is no, are there any conditions that f or g must satisfy if $g \circ f$ an injection? Prove your answers.
(b) Is it true that if $g \circ f$ is a surjection, then both f and g are surjections? If the answer is no, are there any conditions that f or g must satisfy if $g \circ f$ a surjection? Prove your answers.

